Math 098 Worksheet 8.2B_GraphingFunctionWithTheInverse_v01 NO BOOK/ NO NOTES/YES CALCUATOR Fall 2017 Dressler

Name_____

Determine if the function is one-to-one. Explain your answer.

1) f(x) = 7x + 7

10) f(x) = |x + 4|

9) f(x) = |x + 3|

2) f(x) = 5x + 5

11)
$$h(x) = \frac{x-8}{5}$$

3) $f(x) = x^3 - 4$

4) $f(x) = x^3 - 7$ 12) $h(x) = \frac{x - 9}{9}$

5)
$$f(x) = x^2 - 2$$
 13) $f(x) = 5$

6)
$$f(x) = x^2 + 6$$
 14) $f(x) = 10$

7)
$$f(x) = -(x - 6)^2$$

16)
$$f(x) = x^2 + 3$$

8) $f(x) = -(x - 10)^2$

Find the inverse of the one-to-one function. Then, verify
that (f · f -1)(x) = x, (f - 1 · f)(x) = x, 0f = R_{f-1}, and R_f = D_{f-1}.
26)
$$h(x) = \frac{5 - x}{5}$$

17) $f(x) = 4x + 3$
27) $g(x) = \frac{7}{x}$

18) $f(x) = 5x + 5$
27) $g(x) = \frac{7}{x}$

19) $f(x) = (x - 5)^3$
28) $g(x) = \frac{6}{x}$

20) $f(x) = (x + 6)^3$
29) $f(x) = \sqrt{x + 8}$

21) $g(x) = x^3 - 12$
30) $f(x) = \sqrt{x + 5}$

22) $g(x) = x^3 - 9$
31) $g(x) = \frac{1 - x}{6x}$

23) $f(x) = \sqrt{x + 2}$
32) $g(x) = x^3 + 4$

24) $f(x) = \sqrt{x + 3}$
33) $f(x) = \sqrt{x + 9}$

25) $h(x) = \frac{6 - x}{6}$
34) $g(x) = \frac{11}{x}$

Determine if the functions are inverses of each other.

35) $f(x) = 5x, g(x) = \frac{x}{5}$

44)
$$f(x) = x^3 + 8$$
, $g(x) = \sqrt[3]{x - 8}$

45)
$$f(x) = x^5 + 3$$
, $g(x) = \sqrt[5]{x} - 3$
36) $f(x) = 4x$, $g(x) = \frac{x}{\sqrt{x}}$

46)
$$f(x) = x^5 + 9$$
, $g(x) = \sqrt[5]{x} - 9$
37) $f(x) = x - 5$, $g(x) = x + 5$

38)
$$f(x) = x - 3$$
, $g(x) = x + 3$
47) $f(x) = 6x$, $g(x) = \frac{x}{6}$

39)
$$f(x) = 5x + 9$$
, $g(x) = \frac{x - 9}{5}$
48) $f(x) = 2x + 3$, $g(x) = \frac{x - 3}{2}$

40)
$$f(x) = 2x + 2$$
, $g(x) = \frac{x - 2}{2}$
49) $f(x) = 5x + 4$, $g(x) = 4 - 5x$

41)
$$f(x) = 5x + 9$$
, $g(x) = 9 - 5x$
50) $f(x) = 5x + 6$, $g(x) = \frac{x - 6}{5}$

42)
$$f(x) = 6x + 4$$
, $g(x) = 4 - 6x$
51) $f(x) = 8x$, $g(x) = \frac{x}{8}$

43)
$$f(x) = x^3 + 2$$
, $g(x) = \sqrt[3]{x-2}$
52) $f(x) = 7x + 4$, $g(x) = 4 - 7x$

Solve the application.

- 53) When Miguel converted his Mexican pesos to U.S. dollars, the conversion function was represented by f(x) = 13.4x, where x represented the number of U.S. dollars. Find the inverse function f^{-1} and explain the meaning of the variables.
- 54) When Miguel converted his Mexican pesos to U.S. dollars, the conversion function was represented by f(x) = 13.2x, where x represented the number of U.S. dollars. Find the inverse function f^{-1} and explain the meaning of the variables.
- 55) When Pierre converted his Euros to British pounds, the conversion function was represented by f(x) = 1.13x, where x represented the number of British pounds. By finding the inverse function, determine how many British pounds Pierre received if he converted 1695 Euros. Round to the nearest pound, if necessary.
- 56) When Pierre converted his Euros to British pounds, the conversion function was represented by f(x) = 1.13x, where x represented the number of British pounds. By finding the inverse function, determine how many British pounds Pierre received if he converted 1808 Euros. Round to the nearest pound, if necessary.

- 57) Sandra earns a weekly salary of \$600 plus 4% on her total sales. If x represents the total dollar amount of her sales for one week, then f(x) = 600 + 0.04x represents her weekly salary. Find the inverse function and explain the meaning of the variables.
- 58) Sandra earns a weekly salary of \$650 plus 7% on her total sales. If x represents the total dollar amount of her sales for one week, then f(x) = 650 + 0.07x represents her weekly salary. Find the inverse function and explain the meaning of the variables.
- 59) Derek earns a weekly salary of \$600 plus 5% on his total sales. If x represents the total dollar amount of his sales for one week, then f(x) = 600 + 0.05x represents his weekly salary. By finding the inverse function, determine Derek's total sales the week his salary was \$950.
- 60) Derek earns a weekly salary of \$500 plus 7% on his total sales. If x represents the total dollar amount of his sales for one week, then f(x) = 500 + 0.07x represents his weekly salary. By finding the inverse function, determine Derek's total sales the week his salary was \$ 1130.

1) One-to-one, passes the horizontal line test One-to-one, passes the horizontal line test 3) One-to-one, passes the horizontal line test 4) One-to-one, passes the horizontal line test 5) Not one-to-one, fails the horizontal line test 6) Not one-to-one, fails the horizontal line test 7) Not one-to-one, fails the horizontal line test 8) Not one-to-one, fails the horizontal line test 9) Not one-to-one, fails the horizontal line test 10) Not one-to-one, fails the horizontal line test 11) One-to-one, passes the horizontal line test 12) One-to-one, passes the horizontal line test 13) Not one-to-one, fails the horizontal line test 14) Not one-to-one, fails the horizontal line test 15) One-to-one, passes the horizontal line test 16) Not one-to-one, fails the horizontal line test 17) $f^{-1}(x) = \frac{x-3}{4}$ 18) $f^{-1}(x) = \frac{x-5}{5}$ 19) $f^{-1}(x) = \sqrt[3]{x} + 5$ 20) $f^{-1}(x) = \sqrt[3]{x} - 6$ 21) $g^{-1}(x) = \sqrt[3]{x+12}$ 22) $g^{-1}(x) = \sqrt[3]{x+9}$ 23) $f^{-1}(x) = x^2 - 2, x \ge 0$ 24) $f^{-1}(x) = x^2 - 3, x \ge 0$ 25) $h^{-1}(x) = -6x + 6$ 26) $h^{-1}(x) = -5x + 5$ 27) $g^{-1}(x) = \frac{7}{x}, x \neq 0$ 28) $g^{-1}(x) = \frac{6}{x}, x \neq 0$ 29) $f^{-1}(x) = x^3 - 8$ 30) $f^{-1}(x) = x^3 - 5$ 31) $g^{-1}(x) = \frac{1}{6x+1}, x \neq -\frac{1}{6}$ 32) $g^{-1}(x) = \sqrt[3]{x-4}$ 33) $f^{-1}(x) = x^2 - 9, x \ge 0$ 34) $g^{-1}(x) = \frac{11}{x}, x \neq 0$ 35) Yes 36) Yes 37) Yes 38) Yes

Answer Key Testname: WORKSHEET 8.2B_GRAPHINGFUNCTIONWITHTHEINVERSE_V01

39) Yes

40) Yes

41) No

- 42) No
- 43) Yes 44) Yes
- 45) No
- 46) No
- , 47) Yes
- 48) Yes
- 49) No
- 50) Yes
- 51) Yes
- 52) No

53) $f^{-1}(x) = \frac{x}{13.4}$; x represents the number of pesos, $f^{-1}(x)$ represents the number of U.S. dollars.

54) $f^{-1}(x) = \frac{x}{13.2}$; x represents the number of pesos, $f^{-1}(x)$ represents the number of U.S. dollars.

- 55) 1500 pounds
- 56) 1600 pounds

57) $f^{-1}(x) = \frac{x - 600}{0.04}$, where x represents her weekly salary and $f^{-1}(x)$ represents her total sales.

58) $f^{-1}(x) = \frac{x - 650}{0.07}$, where x represents her weekly salary and $f^{-1}(x)$ represents her total sales.

- 59) \$7000
- 60) \$9000